
Add: HeBei ShengShi HongBang Cellulose Technology CO.,LTD.


CONTACT US
+86 13180486930
Understanding Redispersible Emulsion Powder: A B2B Perspective In the realm of modern construction and advanced material science, redispersible emulsion powder stands as a cornerstone additive, revolutionizing the performance of dry-mix mortars. This versatile polymer powder, primarily derived from vinyl acetate-ethylene (VAE) copolymers, transforms conventional building materials by enhancing their key properties. Its unique ability to re-emulsify upon contact with water allows it to function as a binding agent within cementitious and gypsum-based formulations, significantly improving adhesion, flexibility, water resistance, and overall durability. For B2B decision-makers and technical engineers, comprehending the intricacies of this material is crucial for optimizing product formulations, ensuring project longevity, and meeting stringent industry standards across diverse applications. Detailed Manufacturing Process of Redispersible Emulsion Powder The production of redispersible emulsion powder is a sophisticated chemical engineering process designed to encapsulate liquid polymer emulsions into a stable, free-flowing powder. This process ensures that the polymer retains its performance characteristics when re-dispersed in water at the point of application. The core materials typically include a liquid polymer emulsion (e.g., VAE emulsion), protective colloids (like polyvinyl alcohol), and anti-caking agents. Process Flow Schematic: 1. Emulsion Polymerization: This initial stage involves the polymerization of monomers (e.g., vinyl acetate and ethylene) in an aqueous medium to form a stable polymer emulsion. Specific catalysts, emulsifiers, and stabilizers are used to control the reaction and ensure desired polymer properties, such as glass transition temperature (Tg) and particle size. 2. Addition of Protective Colloids and Additives: The liquid polymer emulsion is then mixed with protective colloids (e.g., polyvinyl alcohol, cellulose ethers) and other functional additives. These colloids prevent irreversible agglomeration during the subsequent drying process and enable the powder's redispersibility. 3. Spray Drying: This is the most critical step. The prepared emulsion mixture is atomized into a fine mist within a hot air chamber. Rapid evaporation of water leaves behind solid polymer particles encapsulated by the protective colloid, forming a fine, spherical powder. The spray drying parameters (temperature, flow rate, nozzle type) are meticulously controlled to ensure optimal particle morphology and redispersibility. 4. Post-Treatment and Anti-Caking: After spray drying, the powder may undergo further processing, such as cooling. Anti-caking agents (e.g., mineral fillers like calcium carbonate or silicates) are then added to prevent the powder from clumping together during storage and transportation, ensuring its free-flowing nature. 5. Packaging: The final redispersible powder is typically packed in multi-ply paper bags with internal polyethylene liners to protect it from moisture and ensure a long shelf life. Testing Standards: Throughout this process, stringent quality control measures are applied, adhering to international standards such as ISO 9001 for quality management systems. Specific product performance is often evaluated against standards like EN 1504 (for concrete repair products), ASTM C1101 (for dry-mix base coat), and various national standards for bond strength, water retention, flexibility, and impact resistance. These tests ensure the product meets the demanding requirements of various target industries. Target Industries and Service Life: Redispersible latex powder finds extensive use in the construction industry, including infrastructure projects (bridges, tunnels), residential and commercial buildings, and specialized applications like external insulation and finish systems (EIFS), tile adhesives, self-leveling compounds, and repair mortars. The use of high-quality polymer powder significantly extends the service life of these applications by imparting superior adhesion, crack resistance, and durability, often contributing to design lives exceeding 25-50 years for structural elements when properly formulated. Advantages in Typical Application Scenarios: In an EIFS application, for instance, a VAE redispersible emulsion powder enhances the bond between insulation boards and the substrate, improves the flexibility of the base coat to resist thermal stress, and contributes to the system's overall water repellency, leading to energy saving benefits and superior corrosion resistance for the building envelope. Figure 1: Schematic of the Redispersible Emulsion Powder Manufacturing Process. Industry Trends and Market Dynamics for Redispersible Emulsion Powder The global market for redispersible emulsion powder is experiencing robust growth, driven by several key macro and micro-economic factors. Increasing urbanization, particularly in emerging economies, fuels demand for new construction and infrastructure development. Concurrently, a heightened focus on sustainable and green building practices is compelling manufacturers to develop environmentally friendly and high-performance building materials. This trend favors products that improve durability and extend the lifespan of structures, thereby reducing the environmental impact associated with frequent repairs and replacements. Technological advancements are leading to the development of specialized vae redispersible powder with enhanced functionalities, such as improved hydrophobic properties, higher flexibility at low temperatures, and superior open time for tile adhesives. The push for pre-mixed, factory-controlled dry mortars is also a significant trend, as these products offer consistent quality, reduced on-site labor, and minimized material waste. Geographically, Asia-Pacific remains the largest and fastest-growing market due to massive construction activities, while stringent building codes in Europe and North America continue to drive demand for high-performance additives. Figure 2: Global Growth Trends in Construction Additives. Technical Specifications: Redispersible Powder VAE Our Redispersible Powder VAE is engineered to meet rigorous performance requirements across a spectrum of construction applications. Understanding the technical parameters is essential for precise formulation and optimal end-product performance. Below are typical specifications for a high-quality VAE redispersible emulsion powder : Typical Specifications for Redispersible Powder VAE Parameter Unit Typical Value Test Method / Standard Appearance - White, free-flowing powder Visual Inspection Solid Content % ≥ 98.0 ISO 3251 Ash Content % 8.0 - 12.0 DIN 53185 Bulk Density g/L 450 - 650 DIN EN 12351 Particle Size (<250 μm) % ≥ 98.0 EN 12190 Glass Transition Temperature (Tg) °C 0 to +15 (adjustable) DSC (ASTM D3418) Minimum Film Forming Temperature (MFFT) °C 0 ISO 2115 pH Value (10% solution) - 7.0 - 9.0 Electrode Method Viscosity (10% solution) mPa·s 50 - 200 Brookfield Viscometer These parameters directly influence the performance characteristics such as adhesion strength, flexibility, water resistance, and workability of the final dry-mix mortar. For example, a lower Glass Transition Temperature (Tg) generally indicates higher flexibility, making the polymer powder suitable for applications requiring deformation resistance, such as tile adhesives on challenging substrates. Application Scenarios and Technical Advantages The versatility of redispersible emulsion powder allows its integration into a wide array of construction applications, each benefiting from its unique polymer-modified properties. This section highlights typical usage scenarios and the specific technical advantages imparted. Tile Adhesives (C1/C2 Grades): Incorporating redispersible latex powder significantly boosts the bond strength to various substrates (concrete, plasterboard, existing tiles), improves flexibility to accommodate thermal and structural movements, and enhances water resistance, making it ideal for wet areas and external applications. This leads to reduced tile cracking and delamination, extending the service life of tiled surfaces. External Thermal Insulation Composite Systems (ETICS/EIFS): As a critical component in base coats and renders, vae redispersible powder provides excellent adhesion to insulation boards (EPS, mineral wool), improves impact resistance, and imparts crucial flexibility to prevent cracking due to temperature fluctuations. Its hydrophobic characteristics also reduce water absorption, thereby enhancing the system's thermal performance and longevity. Self-Leveling Compounds (SLCs): In SLCs, polymer powder contributes to superior flow properties, allowing for a perfectly smooth and level surface without extensive manual labor. It also increases abrasion resistance, reduces shrinkage, and improves the bond to the subfloor, creating a durable base for various floor coverings. Wall Putties and Skim Coats: Enhances adhesion to diverse substrates, improves workability for smoother application, and increases the hardness and crack resistance of the final surface, preparing it ideally for painting or decorative finishes. Repair Mortars: Crucial for restoring structural integrity, redispersible emulsion powder improves the bond between old and new concrete, enhances compressive and flexural strength, and significantly increases resistance to carbonation and chloride ingress, extending the repair's effectiveness and preventing further degradation. The technical advantages of integrating this specialized redispersible powder include superior adhesion, improved flexural strength, enhanced water repellency, better freeze-thaw stability, increased abrasion resistance, and improved workability and open time for applicators. These benefits translate directly into higher quality construction, reduced maintenance costs, and prolonged structural integrity. Figure 3: Redispersible Emulsion Powder improving adhesion in construction. Vendor Comparison and Customized Solutions Selecting the right supplier for redispersible emulsion powder is paramount for maintaining consistent product quality and ensuring project success. While many vendors offer similar products, differentiation lies in product consistency, technical support, R&D capabilities, and the ability to provide customized solutions. When evaluating potential partners, B2B clients should consider more than just price per kilogram. Comparison of Key Vendor Attributes for Redispersible Emulsion Powder Attribute Standard Vendor Premium/Specialized Vendor Product Consistency Acceptable, with minor batch variations. Highly consistent, stringent QC, tight specification ranges. Technical Support Basic datasheets, limited formulation guidance. Dedicated technical team, on-site support, in-depth formulation advice. Customization Options Limited to standard grades. Extensive R&D, tailored solutions for specific application needs. Certifications ISO 9001 (basic). ISO 9001, ISO 14001, relevant product-specific certifications (e.g., CE, REACH compliance). Lead Time & Logistics Standard lead times, basic shipping. Optimized supply chain, flexible delivery, global distribution network. Customized Solutions: Tailoring Redispersible Powder for Specific Needs The ability to provide customized polymer powder formulations is a hallmark of a leading manufacturer. Customization can involve fine-tuning parameters such as: Glass Transition Temperature (Tg): Adjusting Tg to impart specific flexibility or hardness characteristics for different climatic conditions or substrate types. Particle Size Distribution: Optimizing for specific application needs, such as improved rheology for self-leveling compounds or better open time for tile adhesives. Hydrophobicity: Enhancing water repellency for waterproofing membranes or external renders. Additive Integration: Incorporating specialized additives during the manufacturing process to confer properties like improved freeze-thaw resistance or enhanced adhesion to challenging, non-absorbent substrates. Our company, with extensive years of service and an ISO 9001 certified manufacturing facility, prides itself on working closely with clients to develop tailored redispersible emulsion powder solutions that perfectly match their unique product requirements and market demands. Our authoritative testing methods and robust R&D ensure that custom formulations meet the highest performance and reliability standards. Figure 4: Customization in polymer powder manufacturing. Application Case Studies: Real-World Performance The efficacy of redispersible emulsion powder is best demonstrated through its successful implementation in demanding construction projects. These case studies highlight the tangible benefits and superior performance delivered. Case Study 1: High-Performance Tile Adhesive for a Luxury Hotel A leading hospitality group required a robust tile adhesive for the extensive tiling of a new luxury hotel, including high-traffic lobbies, bathrooms, and a spa area. The project demanded exceptional bond strength, flexibility to accommodate structural shifts, and high water resistance. Our customized VAE redispersible emulsion powder was integrated into a C2TES1 grade tile adhesive formulation. Post-application, tests confirmed a bond strength exceeding 1.5 N/mm² (far exceeding the C2 requirement of 1.0 N/mm²) and excellent deformability (S1 classification), ensuring zero tile detachment or cracking after over three years of intensive use. Customer feedback praised the product's consistent workability and the long-term integrity of the tiled surfaces. Case Study 2: ETICS for a Large-Scale Residential Complex in a Harsh Climate In a large residential complex situated in a region experiencing extreme temperature fluctuations (from -20°C to +40°C), an ETICS solution was critical for energy efficiency and façade protection. Our specialized hydrophobic redispersible powder was used in both the adhesive and base coat layers of the ETICS. After five years, the façade demonstrated exceptional resistance to freeze-thaw cycles, no visible cracks or delamination, and significantly reduced thermal bridging, leading to verified energy savings of approximately 25% for residents. This project underscores the durability and energy-saving potential of high-quality polymer-modified systems. Case Study 3: Concrete Repair Mortar for Industrial Flooring An automotive manufacturing plant required urgent repair of its heavily trafficked concrete flooring, which was subject to chemical spills and heavy machinery loads. A rapid-setting, high-strength repair mortar, formulated with our specific grade of redispersible emulsion powder , was chosen. The mortar achieved early strength development, allowing the factory to resume operations quickly. After two years, the repaired areas show no signs of degradation, cracking, or loss of adhesion, even under continuous industrial stress. This demonstrates the superior mechanical properties and long-term resilience imparted by our advanced polymer additives. Figure 5: Enhanced concrete durability with Redispersible Emulsion Powder. Trust & Support: FAQ, Lead Time, Warranty & Customer Service Frequently Asked Questions (FAQ) Q: What is the primary function of redispersible emulsion powder in dry-mix mortars? A: Its primary function is to enhance adhesion, flexibility, water resistance, cohesion, and workability of dry-mix mortars upon re-dispersion in water, acting as an organic binder. Q: How should redispersible powder be stored? A: It should be stored in its original, unopened packaging in a cool, dry place, protected from direct sunlight and moisture. Ideal temperature is below 30°C. Shelf life is typically 12 months under these conditions. Q: Can your VAE redispersible powder be customized for specific applications? A: Yes, absolutely. We offer extensive R&D capabilities to tailor parameters such as Tg, particle size, and hydrophobicity to meet unique formulation requirements and performance objectives. Q: Is your product environmentally friendly? A: Our VAE redispersible emulsion powder contributes to sustainable construction by enhancing durability and longevity of materials, reducing the need for frequent repairs and waste. We adhere to stringent environmental standards in our manufacturing processes. Lead Time & Fulfillment We maintain robust production capacities and an efficient supply chain to ensure timely delivery. Standard lead times for our redispersible powder products typically range from 7 to 14 business days, depending on order volume and destination. For large-scale projects or custom orders, lead times will be communicated clearly upon order confirmation. We work with reliable logistics partners to provide global distribution. Warranty Commitments Our redispersible emulsion powder products are manufactured under strict quality control, holding ISO 9001 certification. We warrant that our products meet the published technical specifications and are free from defects in material and workmanship when stored and used according to our recommendations. Any claims regarding product quality must be reported within a specified period from the date of delivery, and we commit to prompt investigation and resolution. Customer Support Our dedicated customer support team and technical experts are available to assist with product selection, formulation guidance, application advice, and troubleshooting. We offer comprehensive pre-sales consultation, during-sales support, and robust after-sales service, including technical data sheets, safety data sheets, and performance testing data. We are committed to fostering long-term partnerships through unparalleled support. References Ohama, Y. (1995). Polymer-Modified Mortars and Concretes. In Cement and Concrete Composites , 17(1), 3-15. Schroeder, F., & Hessel, K. (2014). Redispersible Polymer Powders: An Essential Component for Modern Dry Mix Mortars. In Construction and Building Materials , 69, 34-42. European Standard EN 12004: Adhesives for tiles - Requirements, evaluation of conformity, classification and designation. American Society for Testing and Materials (ASTM) Standards.

Production

Experience

Acreage
Understanding Wood Cellulose Its Nature and Importance Cellulose is a complex carbohydrate that is a primary component of the cell walls of plants, including trees and other woody plants. It is an essential structural polysaccharide that provides plants with strength and rigidity. In the context of wood, cellulose accounts for a significant portion of its composition, playing a critical role in its mechanical properties and durability. What is Cellulose? Cellulose is a polymer made up of long chains of glucose units linked together by beta-1,4-glycosidic bonds. This linear arrangement allows cellulose molecules to pack tightly together, forming strong fibers that give wood its strength. The structure of cellulose differs from that of starch, another carbohydrate made up of glucose units. While starch is branched and serves as an energy reserve for plants, cellulose maintains a straight chain configuration, which is crucial in providing structural stability. In wood, cellulose is present alongside other important components, such as hemicellulose and lignin. Hemicellulose is another type of polysaccharide that helps to bind cellulose fibers together, while lignin provides additional rigidity and resistance to decay. The combination of cellulose, hemicellulose, and lignin contributes to the overall strength, flexibility, and longevity of wood. The Role of Cellulose in Wood Cellulose serves several vital functions in wood. Its primary role is to provide structural integrity. The strong and durable cellulose fibers contribute to the mechanical strength that enables trees to grow tall and withstand external forces such as wind and snow. This property is particularly important for trees, as their height and stability are crucial for sun exposure and nutrient acquisition. Moreover, cellulose also plays a role in water retention and transportation within the plant. The porous structure created by cellulose fibers allows for the movement of water and nutrients from the roots to the leaves. This hydraulic function is essential for the growth and health of the tree. Applications of Wood Cellulose ¿qué es la celulosa de madera? The significance of cellulose extends beyond its biological functions; it is also a valuable resource for various industries. Wood cellulose is harvested and processed to produce a wide range of products, including paper, textiles, and biodegradable plastics. Paper Production The paper industry relies heavily on cellulose extracted from wood pulp. The cellulose fibers are processed, bleached, and formed into sheets, which are then dried and rolled into paper products. The strength and flexibility of cellulose make it ideal for creating high-quality paper. Textiles Cellulose fibers can be transformed into textiles such as rayon and lyocell. These fabric materials are derived from wood pulp and are prized for their softness, breathability, and biodegradability. As sustainability becomes increasingly important in the fashion industry, cellulose-based textiles provide an eco-friendly alternative to synthetic fibers. Biodegradable Plastics With the rise of environmental concerns regarding plastic pollution, wood cellulose has emerged as a potential material for producing biodegradable plastics. Utilizing cellulose as a raw material for bioplastics allows for the creation of renewable and compostable alternatives to conventional petroleum-based plastics. Environmental Significance From an environmental perspective, cellulose plays a vital role in carbon sequestration. Trees absorb carbon dioxide from the atmosphere during photosynthesis, converting it into cellulose and other organic compounds. This process not only contributes to the growth of trees but also helps to mitigate climate change by reducing greenhouse gas levels in the atmosphere. Sustainable forest management practices that prioritize the retention of cellulose-rich trees contribute to preserving biodiversity and promoting healthy ecosystems. By ensuring that forests remain intact and flourishing, we can continue to benefit from the myriad resources and ecological services they provide. Conclusion Cellulose in wood is a remarkable natural polymer that holds tremendous significance for both the environment and various industries. Its structural properties contribute to the strength and durability of trees, while its versatility makes it a valuable resource for producing a wide array of products. As we seek sustainable solutions for the future, understanding the role of wood cellulose and utilizing it responsibly will be essential for balancing ecological health with industrial needs.
In the dynamic world of construction and interior finishing, the importance of time and precision cannot be overstated. When working with gypsum-based materials, controlling the setting time is critical to achieving optimal application quality and avoiding material waste. This is where the cream of tartar plaster retarder becomes a game-changer. Known for its ability to effectively slow down the setting process of gypsum, cream of tartar offers contractors, builders, and DIYers the flexibility they need to work with ease and precision. Derived from potassium bitartrate, cream of tartar plaster retarder is a natural additive that works by interfering with the hydration process of calcium sulfate hemihydrate. By delaying the formation of gypsum crystals, it extends the working time of plasters, allowing for more accurate application, especially in complex or large-scale projects. What makes this additive especially appealing is its safety profile—non-toxic, environmentally friendly, and easy to incorporate into existing mixes. Professionals favor cream of tartar plaster retarder for fine finishing jobs, artistic applications, and situations requiring a high level of detail. Whether it's decorative ceiling work or intricate molding, the extended setting time gives artisans the chance to perfect their craft without the stress of rapid hardening. It also prevents cracks and imperfections that result from rushing or poorly mixed plasters. This additive brings quality control to the fingertips of every plastering expert. Unlock Greater Flexibility with Extra Time Plaster Additive Time is of the essence in construction, yet when it comes to plastering, having extra time plaster additive can be the difference between an average finish and a flawless surface. Whether working in extreme climates, on complex architectural details, or over large surface areas, professionals turn to extra time solutions for reliable performance. The extra time plaster additive functions by slowing the exothermic reaction during the hydration phase of gypsum. This modification allows plaster to remain workable for an extended period, eliminating the pressure to rush and reducing the risk of uneven finishes or missed spots. When applying multiple coats, adjusting level surfaces, or sculpting decorative elements, having more time is essential. Contractors using extra time plaster additive can avoid common pitfalls such as cold joints, early cracking, and rework. This results in reduced labor costs, minimized material waste, and higher client satisfaction. The additive proves especially useful in hot or dry climates where rapid evaporation shortens setting time drastically. It also supports better adhesion and uniform curing, which enhances durability and visual appeal. Unlike traditional retarders that may be difficult to dose or mix, extra time plaster additive is typically formulated for easy integration into any gypsum-based compound. It’s compatible with hand-applied and machine-applied plaster systems, ensuring versatility across all modern construction needs. Ultimately, this additive empowers professionals to focus on the artistry of their work rather than the ticking clock. Boost Efficiency with Gypsum Retarder Chemical for Plaster Control In industrial and commercial applications, the demand for scalable, consistent results makes the gypsum retarder chemical an indispensable asset. As large construction firms and manufacturers strive for excellence, this specialized compound ensures that every batch of gypsum-based material meets strict timelines and quality standards. A gypsum retarder chemical is designed to fine-tune the reaction kinetics of gypsum, adjusting the setting profile to suit specific environmental conditions, labor availability, and surface characteristics. Whether used in precast gypsum panels, wallboards, or on-site plastering, this chemical enhances workability without compromising structural integrity. The flexibility introduced by the gypsum retarder chemical translates to a more efficient workforce and a higher degree of control during application. It allows for staggered mixing and application cycles, which are essential in large-scale operations where teams are working in sequence. It also enables smoother finishing, reducing sanding and touch-up time. Engineered for reliability, the gypsum retarder chemical ensures uniform retardation across batches, reducing variability and helping to meet regulatory requirements. It’s compatible with a wide range of gypsum products and can be custom-formulated to suit specific climatic or production line conditions. Construction and prefab companies appreciate its scalability, allowing consistent quality from the first mix to the last. Cream of Tartar Plaster Retarder vs Extra Time Plaster Additive: Which One to Choose? Both cream of tartar plaster retarder and extra time plaster additive serve the same primary function—slowing the setting time of gypsum. However, they are suited to different contexts based on formulation, project scale, and performance expectations. Choosing between them depends on your specific needs. The cream of tartar plaster retarder is ideal for small to medium jobs, decorative applications, and environmentally conscious builders. Its natural origin makes it a favorite among those seeking greener construction practices. It is best suited for jobs where fine detail and user-friendly handling are essential. Conversely, the extra time plaster additive is typically a more robust, commercially formulated product with predictable dosing and consistent results. It’s perfect for demanding conditions, larger surface areas, and time-sensitive environments. In high-speed construction settings or temperature-challenged environments, this additive holds significant advantages. The decision between cream of tartar plaster retarder and extra time plaster additive comes down to whether you're prioritizing artisanal flexibility or industrial performance. For best results, many professionals keep both options available, choosing based on project specifics. The Role of Gypsum Retarder Chemical in Modern Construction Materials With the evolution of gypsum-based products, from drywall panels to high-performance plasters, the gypsum retarder chemical has emerged as a silent yet powerful player in product formulation. It is not only a time control agent but also a quality enhancer that impacts the entire lifecycle of the construction process. By integrating a gypsum retarder chemical into base formulations, manufacturers can produce longer-lasting products that are easier to handle and apply. This reduces waste on job sites, improves finish quality, and supports more sustainable construction practices. From factory to field, the chemical offers unparalleled control over curing profiles. Additionally, the gypsum retarder chemical contributes to better adhesion, fewer shrinkage issues, and improved compatibility with various coatings and finishes. Its use extends into decorative gypsum items, pre-formed molds, and even fire-resistant panels, making it a cornerstone in high-performance building systems. In a world where precision, efficiency, and environmental accountability are paramount, incorporating gypsum retarder chemical solutions is not just beneficial—it’s essential. As innovation in gypsum products continues to rise, the role of smart chemical additives like this one will only grow more integral to future-proof construction strategies. gypsum retarder chemical FAQs What is the primary benefit of using cream of tartar plaster retarder? The main benefit is its ability to slow the setting time of gypsum-based plaster, which allows more working time for detailed or large-area applications. It is especially useful for artisans and those doing decorative or fine finishing work, providing better control and reducing the likelihood of surface defects. Can extra time plaster additive be used in both hot and cold weather? Yes, extra time plaster additive is effective in both hot and cold climates. In hot weather, it prevents premature setting due to high evaporation, while in colder temperatures, it helps maintain a consistent setting time by offsetting the slow natural reaction rates. This ensures reliable performance regardless of external conditions. How does gypsum retarder chemical differ from natural retarders? While natural retarders like cream of tartar are biodegradable and easy to use, gypsum retarder chemical products are typically engineered for precision, consistency, and scalability. They are designed for use in industrial settings and offer tighter control over setting time, making them ideal for mass production and large-scale projects. Is cream of tartar plaster retarder safe for indoor use? Absolutely. Cream of tartar is food-grade in its pure form and is non-toxic when used as a plaster retarder. It does not release harmful fumes and is considered safe for indoor applications, making it a preferred choice for residential and commercial interiors. How much extra time plaster additive should I add to gypsum? The amount varies by manufacturer, but generally ranges between 0.1% and 1% of the total plaster weight. Always follow the supplier's instructions for optimal performance. Overdosing may excessively delay setting or affect final strength, while underdosing might not provide sufficient working time.
200000 Viscosities
Excellent product
We can produce pure products up to 200,000 viscosities
40000 tons
High yield
We don’t stop production all year round, and the annual output can reach 40,000 tons
24 hours
Quality service
We provide 24-hours online reception service, welcome to consult at any time
———— Inquiry Form
Schedule A services
Oct . 25, 2025
Oct . 25, 2025
Oct . 25, 2025